Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers.
نویسندگان
چکیده
In the pursuit of ultrasmall electronic components, monolayer electronic devices have recently been fabricated using transition-metal dichalcogenides. Monolayers of these materials are semiconducting, but nanowires with stoichiometry MX (M = Mo or W, X = S or Se) have been predicted to be metallic. Such nanowires have been chemically synthesized. However, the controlled connection of individual nanowires to monolayers, an important step in creating a two-dimensional integrated circuit, has so far remained elusive. In this work, by steering a focused electron beam, we directly fabricate MX nanowires that are less than a nanometre in width and Y junctions that connect designated points within a transition-metal dichalcogenide monolayer. In situ electrical measurements demonstrate that these nanowires are metallic, so they may serve as interconnects in future flexible nanocircuits fabricated entirely from the same monolayer. Sequential atom-resolved Z-contrast images reveal that the nanowires rotate and flex continuously under momentum transfer from the electron beam, while maintaining their structural integrity. They therefore exhibit self-adaptive connections to the monolayer from which they are sculpted. We find that the nanowires remain conductive while undergoing severe mechanical deformations, thus showing promise for mechanically robust flexible electronics. Density functional theory calculations further confirm the metallicity of the nanowires and account for their beam-induced mechanical behaviour. These results show that direct patterning of one-dimensional conducting nanowires in two-dimensional semiconducting materials with nanometre precision is possible using electron-beam-based techniques.
منابع مشابه
Dynamic Phase Engineering of Bendable Transition Metal Dichalcogenide Monolayers.
Current interest in two-dimensional (2D) materials is driven in part by the ability to dramatically alter their optoelectronic properties through strain and phase engineering. A combination of these approaches can be applied in quasi-2D transition metal dichalcogenide (TMD) monolayers to induce displacive structural transformations between semiconducting (H) and metallic/semimetallic (T') phase...
متن کاملCovalent functionalization of monolayered transition metal dichalcogenides by phase engineering.
Chemical functionalization of low-dimensional materials such as nanotubes, nanowires and graphene leads to profound changes in their properties and is essential for solubilizing them in common solvents. Covalent attachment of functional groups is generally achieved at defect sites, which facilitate electron transfer. Here, we describe a simple and general method for covalent functionalization o...
متن کاملStrain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides
Articles you may be interested in Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study Electronic and thermoelectric properties of few-layer transition metal dichalcogenides Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel Band alignment ...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملOptimizing Charge Injection across Transition Metal Dichalcogenide Heterojunctions: Theory and Experiment.
In search of an improved strategy to form low-resistance contacts to semiconducting transition metal dichalcogenides, we combine ab initio density functional electronic structure calculations for an NbSe2/WSe2 interface with quantum transport measurements of the corresponding heterojunction between a few-layer WSe2 semiconductor and a metallic NbSe2 layer. Our theoretical results suggest that, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2014